
BIOS Documentation
Version 1.0

General Properties and Memory Setup

Boot Sequence
The bios starts with a boot sequence located at 0c8000 0000 0000 0000. It sets up the Trap handler
registers rTT (dynamic traps) and rT (forced traps). It calls a subroutine (memory) to initialize rV
and, if needed, the page tables.
If the CPU simulator or a debugger has loaded a user program, it should set the following registers:

• Set rXX to #FB0000FF = UNSAVE $255. The user program is then started with a
RESUME 1 operation after preparing $255 to contain the initial value (-1) for rK.

• Set rBB to the address in the stack segment where UNSAVE will find its data. The
RESUME 1 operation will copy rBB to $255. Hence, rBB must be initialized to contain the
appropriate value.

• Set rWW to the entry point in the main program, that’s where the program continues after
the UNSAVE.

If no program is loaded, rXX will be 0, that is TRAP 0,Halt,0 and it ends the program, before it has
started, in the Halt trap handler.

Hardware
This Bios assumes the following physical device addresses and interrupt numbers:

Device Start Address Interrupt

ROM 0x0000 0000 0000 0000
RAM 0x0000 0001 0000 0000
FLASH 0x0000 0002 0000 0000
Keyboard 0x0001 0000 0000 0000 40
Screen 0x0001 0000 0000 0008 41
Mouse 0x0001 0000 0000 0010 42
GPU 0x0001 0000 0000 0020 43
Video Ram 0x0002 0000 0000 0000
Timer 0x0001 0000 0000 0060 44
Serial 0x0001 0000 0000 0080 45 (In) 46 (Out)
Sevensegement 0x0001 0000 0000 0090
Unused 0x0001 0000 0000 0098
LED 0 0x0001 0000 0000 00B0
LED 1 0x0001 0000 0000 00B8
LED 2 0x0001 0000 0000 00C0
LED 3 0x0001 0000 0000 00C8
Disk 0x0001 0000 0000 00D0 47

Button 0 48
Button 1 49
Button 2 50
Button 3 51

Page Tables
The page tables are kept in ROM, so there is no way of altering the tables at run time.
Consequently, page faults can not be serviced properly.
The memory is organized in pages of 8 kByte.
The first page in RAM is not mapped into user space, it is reserved for the bios.

The user TEXT segment has 12 pages (96kB) mapping virtual addresses from 0x0 to 0x17FFF to
physical addresses from #0000 0001 0000 2000 to #0000 0001 0001 9FFF

The user DATA segment has 8 pages (64 kByte) of RAM, mapping virtual addresses from 0x2000
0000 0000 0000 to 0x2000 0000 0000 FFFF to physical addresses from #0000 0001 0001 a000 to
#0000 0001 0002 9FFF. Another 8 pages (64 kByte) are mapped to FLASH, a kind of persistent
RAM, mapping virtual addresses from 0x2000 0000 0001 0000 to 0x2000 0000 0001 FFFF to
physical addresses from #0000 0002 0000 0000 to #0000 0002 0001 FFFF.

The user POOL segment has 2 pages (16 kByte) mapping virtual addresses from 0x4000 0000 0000
0000 to 0x4000 0000 0000 3FFF to physical addresses from #0000 0001 0002 a000 to #0000 0001
0002 DFFF

The user STACK segment has 12 pages, 10 (80 kByte) at the upper and 2 at the lower end. The
lower end mapping virtual addresses from 0x6000 0000 0000 0000 to 0x6000 0000 0001 3FFF to
physical addresses from #0000 0001 0002 e000 to #0000 0001 0004 1FFF is used for the MMIX
register stack (growing upward). The upper end mapping virtual addresses from 0x6000 0000 007F
C000 to 0x6000 0000 007F FFFF to physical addresses from #0000 0001 0004 2000 to #0000 0001
0004 5FFF is used by the GCC compiler for its memory stack (growing downward).

Utility Functions
There are two utility functions: KeyboardC and ScreenC.

KeyboardC
Reads one character from the keyboard and returns the character. In case of errors (negative status)
or if no data is available (character count is zero) it will power down the processor with a SYNC 4
instruction, and waits until the keyboard interrupt occurs.

ScreenC
There are two versions of this function, one for output to the screen device and one for output to the
winvram device using the GPU.
The procedure takes one parameter: in $0 is an ASCII character code that is to be displayed on the
screen. Both implementations are very simple using no buffering. They just rely on the fact that the
devices are fast.

 Version one sends it to the screen device by storing it into the output byte location. Version two
stores it to the Screen using the GPU. The GPU command to put a character on the screen,
advances the current location automatically. All that is needed is adding a 0x01 in the high byte of
a TETRA containing the character and store it to the command TETRA of the GPU. In case the
character was a carriage return (0x0D) a following line feed character (0x0A) is added. This
accounts for windows style input, where typing the return key, just produces a carriage return
character.

Dynamic Traps
During the boot sequence the register rTT is set to the dynamic trap handler DTrap. It saves all
local registers jumping to DTrap:Handler. After return from the DHandler, it restores rJ, sets up
$255 for rK and returns to the user program.

The DHandler inspects rQ, to find the lowest bit set, resets it to zero and jumps through a jumptable
to the specific trap handler. Most entries in the jump table point to d default handler for unhandled
traps. The specific trap handlers, must not alter any global registers. They can alter local registers
and must return with a POP 0,0 instruction.

Unhandled Traps
Informs the debugger with a SYMW 5 instruction and returns.

Keyboard Interrupt
Reads the status and data OCTA from the keyboard. In case of errors (negative status) returns
immediately. If no data available (character count is zero) return immediately. Otherwise, the
available character is echoed to the screen. There is no buffering for a subsequent read operation.

Forced Traps
Forced traps are mapped to the FTrap routine using the rT register. The FTrap routine saves the
local registers by calling the FTrap:Handler and will restore rJ and rK (through $255) before
resuming. .Forced traps come in different flavors; the most common is caused by a TRAP
instruction, indicated by a negative ROP-Code and the instruction byte in rXX being zero (the
TRAP opcode is zero). The others are either ignored or just don’t happen (Emulate Instruction,
Page table translation in software). For TRAP XYZ instructions, the Y byte contains the function
code. The handler extracts it and uses it to access a jump table. Most values are handled by the
routine FTrap:Unhandled.
Individual trap handlers can be inserted in the jump table. The trap handlers can inspect rXX, for
example, to find out about the Z Byte, the value of rZZ to find the value of $Z, or the value of rBB,
which contains the value of $255 at the time when the TRAP instructions was executed. It is the
common parameter register for TRAP instructions. Results should be stored back into rBB, such
that the final RESUME 1 instruction will place them in $255 for the user program. The routines
must end with a POP 0,0 to get back to the FTrap routine. The MMIXware book has a sequence of
predefined TRAP instructions (Halt, Fopen, …, Fseek, Ftell). Not all of them are implemented in
this bios and the remaining ones are only partly implemented, since there is no file I/O. There are,
however, some other TRAP routines available that allow access to the connected hardware.

Halt (0x00)
The Halt Trap informs the debugger, enables interrupts, and goes into an endless idle loop.
Executing a Trap 0,Halt,0 instruction will never return to the user program. The CPU will however
service dynamic interrupts. This can be appropriate, if there is no user program and the only
purpose of the bios is to serve interrupts.

Fopen (0x01)
Not implemented. The debugger is informed on this before returning.

Fclose (0x02)
Not implemented. The debugger is informed on this before returning.

Fread (0x03)
Not implemented. The debugger is informed on this before returning.

Fgets (0x04)
See MMIXware. The Trap is implemented only for StdIn., reading characters from the keyboard
with echoing to the screen.

Fgetws (0x05)
Not implemented. The debugger is informed on this before returning.

Fwrite (0x06)
See MMIXware. The Trap is implemented only for StdOut and StdErr, writing characters to the
screen.

Fputs (0x07)
See MMIXware. The Trap is implemented only for StdOut and StdErr, writing characters to the
screen.

Fputws (0x08)
Not implemented. The debugger is informed on this before returning.

Fseek (0x09)
Not implemented. The debugger is informed on this before returning.

Ftell (0x0a)
Not implemented. The debugger is informed on this before returning.

TWait (0x10)
Register $255 should contain a time in milliseconds. The Trap will wait until the given time has
elapsed and then will return.

TDate (0x11)
Returns in $255 the current date in the following 8 Byte Format: YYYY MM DW,
Where YYYY is the current year, M is the current month (0 to 11), D is the day in the month (1 to
31) and W is the day in the week (0-6).

TTimeOfDay (0x12)
Returns in $255 the number of milliseconds since midnight.

VPut (0x20)
Expects in $255 the following data: 0xII 0xRR 0xGG 0xBB 0xXXXX XXXX
(II byte ignored, RR red color value byte, GG green color value byte, BB blue color value byte,
XXXXXXXX 32-bit offset into the video RAM) It will store the high TETRA into the Video RAM
using the low TETRA as offset. The Video RAM is a two dimensional array of TETRAs, each
TETRA representing the RGB value of one pixel. The Pixels are stored line by line. The
dimensions of the array are configuration dependent.

VGet (0x21)
Expects in $255 a 32-bit offset into the video RAM. It will read one TETRA from the video RAM
at the given offset and return this value. The value is the RGB value of the corresponding Pixel.
(see VPut above)

GSize (0x22)
Return the size of Screen and Framebuffer as four WYDEs in $255 using the format:
FRAMEWIDTH, FRAMEHEIGHT, SCREENWIDTH, SCREENHEIGHT. The screen
dimensions, given in the medium-low and low WYDE, describe the size of the visible part of the
frame buffer; the frame buffer dimensions in the high and medium-high WYDES give the full
dimension including the off-screen memory. These dimensions can be used to convert (x,y) pixel
coordinates to video ram offsets using the formula offset=4*(x + y*FRAMEWIDTH).

GSetWH (0x23)
The trap expects in the low TETRA of $255 two WYDEs, the width and the height. These values
are used for drawing Rectangles and Bitmaps (see below).

GSetPos (0x24)
The trap expects in the low TETRA of $255 two WYDEs, the x and the y coordinate. These values
are the new current position used for the next drawing operations.

GSetTextColor (0x25)
The trap expects in the high TETRA of $255 the new text background color and in the low TETRA
of $255 the new text foreground color. In each TETRA the highest byte is ignored and the three
lower order byte contain the red green and blue value. The new colors are used for all following
text output operations (including Fputs).

GSetFillColor (0x26)
The trap expects in the low TETRA of $255 the new fill color. In the TETRA the highest byte is
ignored and the three lower order byte contain the red green and blue value. The new color is used
for all following fill operations (e.g. rectangles).

GSetLineColor (0x27)
The trap expects in the low TETRA of $255 the new line color. In the TETRA the highest byte is
ignored and the three lower order byte contain the red green and blue value. The new color is used
for all following line drawing operations.

GPutPixel (0x28)
Expects in $255 the following data: 0xII 0xRR 0xGG 0xBB 0xXXXX 0xYYYY
(II byte ignored, RR red color value byte, GG green color value byte, BB blue color value byte,
XXXX x coordinate as two byte value (range 0 to 639), YYYY y coordinate as two byte value
(range 0 to 479)). Coordinates start in the top left corner with (0,0) and extend to bottom right.
The Pixel with the given coordinates receives the given color.

GPutChar (0x29)
The trap expects in $255 the following data: 0x000000 0xCC 0xXXXX 0xYYYY
The high TETRA contains the ASCII value of a character, padded to the left with three zero byte.
The low TETRA consists of two WYDEs, one for the x and the other for the y coordinate. The
given character is put at the given position using the current text and text-background colors. The
current position is updated to the position exactly after the character written.

GPutStr (0x2A)
The trap expects in $255 the address of a zero terminated string. It is written to the screen starting
at the current position using the current text and text-background colors. The current position is
updated to the position exactly after the string.

GLine (0x2B)
The trap expects in the low TETRA of $255 two WYDEs, the x and the y coordinate. In the low
WYDE of the high TETRA of $255, the trap expects the line width. If the width is zero, a default
width of 1 pixel is used.
A line is drawn from the current position to the position given by x and y. The current position is
then updated to the end of the line, such that successive calls will produce joined lines.

GRectangle (0x2C)
The trap expects in the high TETRA of $255 two WYDES, the width and height, and in the low
TETRA of $255 two WYDEs, the x and the y coordinate of the top left corner of the rectangle.
The Trap draws a rectangle using the current fill color. No update of the current position is
performed.

GBitBlt (0x2D)
This trap facilitates a bit block transfer from video ram to video ram. It is entirely handled within
the GPU and therefore very fast. The trap expects in $255 the address of two OCTAs. The first
OCTA (must be OCTA aligned) consists of four WYDE values: 0xWWWW 0xHHHH 0xXXXX
0xYYYY. These values indicate width, height and destination coordinates x and y of the
destination rectangle. The current position will be changed to match the new x, y position.
From the second OCTA (at address $255+8) only the first (high) TETRA is used. It contains two
WYDEs: the x and the y coordinate of the source bitmap. A rectangular region of the screen is
copied from the source rectangle to the destination rectangle.

GBitBltIn (0x2E)
This trap facilitates a bit block transfer from memory into video ram. The trap expects in $255 the
address of two OCTAs. The first OCTA (must be OCTA aligned) consists of four WYDE values:
0xWWWW 0xHHHH 0xXXXX 0xYYYY. These values indicate the with and height of the bitmap
in main memory and the destination coordinates x and y on the screen the upper left corner of the
bitmap will appear at this position. The current position will be changed to match this new position.
The second OCTA (at address $255+8) contains the memory address of the bitmap data. It is a
sequence of width*height TETRAS, where each TETRA contains one color value in the format
0x00RRGGBB. The whole bitmap is displayed on the screen.

GBitBltOut (0x2F)
This trap facilitates a bit block transfer from video ram to memory. The trap expects in $255 the
address of two OCTAs. The first OCTA (must be OCTA aligned) consists of four WYDE values:
0xWWWW 0xHHHH 0xXXXX 0xYYYY. These values indicate the with and height of the bitmap
and its coordinates x and y in video ram. The current position will be changed to match this new
position. The second OCTA (at address $255+8) contains the destination address of the bitmap data
in ram. It will be filled with a sequence of width*height TETRAS, where each TETRA contains
one color value in the format 0x00RRGGBB from one source pixel on the screen.

MWait (0x30)
The routine waits until a mouse interrupt occurs. It then returns in $255 the following four WYDE
values: 0xBBBB 0xEEEE 0xXXXX 0xYYYY

0xBBBB is the Button status indicating which buttons were down when the interrupt was triggered.
It is a combination of these values:

Name Value Remark
MK_LBUTTON 0x01 The left mouse button is down.
MK_MBUTTON 0x10 The middle mouse button is down.
MK_RBUTTON 0x02 The right mouse button is down.
MK_SHIFT 0x04 The SHIFT key is down.
MK_CONTROL 0x08 The CTRL key is down.

0xEEEE is the event status indicating what triggered the interrupt. It is one of the following values:

Name Value Remark
MOUSEMOVE 0x80
LBUTTONDOWN MK_LBUTTON | MK_SHIFT
LBUTTONUP MK_LBUTTON
LBUTTONDBLCLK MK_LBUTTON | MK_SHIFT | MK_CONTROL
RBUTTONDOWN MK_RBUTTON | MK_SHIFT
RBUTTONUP MK_RBUTTON
RBUTTONDBLCLK MK_RBUTTON | MK_SHIFT | MK_CONTROL
MBUTTONDOWN MK_MBUTTON | MK_SHIFT
MBUTTONUP MK_MBUTTON
MBUTTONDBLCLK MK_MBUTTON | MK_SHIFT | MK_CONTROL

Mouse movement will cause interrupts only if enabled for the mouse device. For the three buttons,
a down event is typically first, followed by an up event. If the next down event comes fast enough,
in addition to the bit indicating the button and the shift-bit indicating the down event also the
control-bit is set to indicate a double click. Application usually start an action with the first down or
up event and modify the continuation when receiving the double click event.

0xXXXX and 0xYYYY are two 16 bit values indicating the mouse coordinates where the event
happened.

BWait (0x40)
Wait for the Button to be pressed. Return immediately if the button was already pressed.

SSet (0x50)
Set the LED’s of a 7-Segment Display using Register $255.

Each of the eight digits (including the dot to the left of the digit) corresponds to one of the eight
byte of register $255. The leftmost digit corresponds to the most significant byte and the right most
digit to the least significant byte. Within a byte, every bit corresponds to one LED of the
corresponding digit according to this Table:

Bit Hex-Value LED
0 0x01 Top-Horizontal
1 0x02 Middle-Horizontal
2 0x04 Bottom-Horizontal
3 0x08 Top-Left-Vertical
4 0x10 Bottom-Left-Vertical
5 0x20 Top-Right-Vertical
6 0x40 Bottom-Right-Vertical
7 0x80 Bottom-Right-Dot

 Setting a bit to 1 will illuminate the LED; setting a bit to 0 will turn the LED off. Multiple LEDs
can be set by setting multiple bits.

SDecimal (0x51)
$255 specifies the number to display in decimal. Z is the position (from the right) where the dot is
displayed. If Z is zero, no dot will be shown.

