Josephus problem

01	N	IS	24		initial population $n < 256$
02	M	IS	11		every m th person is executed; $m > 1$
03	t	IS	\$255		
04	tt	GREG	0		two additional temporary registers
05	ttt	GREG	0		
06	sno	IS	\$0		Sequence number
07	cnt	IS	\$1		A counter
08	cur	IS	\$2		Current element
09	b	IS	\$3		Number of empty slots in out
10	out	IS	\$4		Output 8 characters
11	_mn	GREG	-N+1		
12	_ones	GREG	#0101010101010101		
13		LOC	Data_Segment		
14	_buf	GREG	@		
15		LOC	@+920		maximal $2 * 9 + 3 * 90 + 4 * 157 = 916$ bytes
16	_ctop	GREG	@+N-1		top of circle for N bytes
17	- •	LOC	#100		
18	Main	SET	cnt,_mn	1	Store distance to next man in circle.
19	OH	ST0	_ones,_ctop,cnt	$\lceil n/8 \rceil$	Link each byte with next byte.
20		ADD	cnt,cnt,8	$\lceil n/8 \rceil$	8 links done.
21		PBNP	cnt,0B	$\lceil n/8 \rceil$	
22		STB	_mn,_ctop,0	1	Last byte jumps back to the first.
23		SET	sno,0	1	Start execution; no one excluded so far.
24		SET	cur,_mn	1	Start with first person.
25	1H	SET	cnt,M-2	n-1	Count down $m-2$ links.
26	2H	LDB	tt,_ctop,cur	P	Get distance from cur to next person
27		ADD	cur,cur,tt	P	and follow the link to this person.
28		SUB	cnt,cnt,1	P	-
29		PBNZ	cnt,2B	P	
30		LDB	tt,_ctop,cur	n-1	cur survives the round,
31		ADD	cnt,cur,tt	n-1	but the next man cnt is executed.
32		LDB	t,_ctop,cnt	n-1	Get his neighbor.
33		ADD	tt,tt,t	n-1	Add it to previous distance for cur.
34		STB	tt,_ctop,cur	n-1	Store the new value for cur.
35		ADD	cur,cnt,t	n-1	Move to next man for next round.
36		ADD	sno,sno,1	n-1	Increase the sequence number
37		STB	sno,_ctop,cnt	n-1	and store it for the executed man.
38		CMP	t,sno,N-1	n-1	Is only one person left?
39		PBN	t,1B	n-1	If not start count down again.
40		SET	sno,N	1	He is the last man
41		STB	sno,_ctop,cur	1	and gets the number n .
42	Output	SET	sno,_mn	1	Start the output with first man.
43		SET	b,8	1	8 chars in out are empty.
44		SET	cnt,0	1	Offset in _buf to store out.
45	OH	LDB	t,_ctop,sno	n	Load next sequence number.
46	2H	DIV	t,t,10	D	Extract
47		GET	tt,rR	D	the digits
48		ADD	tt,tt,'0'	D	from right
49		SL	ttt,ttt,8	D	to left
50		OR	ttt,ttt,tt	D	and store them in the register ttt.
51	4H	PBNZ	t,2B	D	
52		SET	t,' '	n	Add a space in front of each sequence number.

Date: 12 Nov 2011 1

Author:	Udo	Wermuth

53		JMP	9F	n
54	1H	AND	t,ttt,#ff	D Move ttt in reverse order to out.
55		SR	ttt,ttt,8	D
56	9H	SL	out,out,8	D+n
57		ADD	out,out,t	D+n
58		SUB	b,b,1	D+n
59		PBNZ	b,3F	D+n
60		ST0	out,_buf,cnt	$\lfloor (D+n)/8 \rfloor$ Store the characters into _buf.
61		ADD	cnt,cnt,8	$\lfloor (D+n)/8 \rfloor$
62		SRU	out,out,64	$\lfloor (D+n)/8 \rfloor$
63		SET	b,8	$\lfloor (D+n)/8 \rfloor$
64	ЗН	PBNZ	ttt,1B	D+n
65		ADD	sno,sno,1	n Next sequence number.
66		PBNP	sno,0B	n
67		SL	out,out,8	1 Add null byte to the final octabyte.
68		ST0	out,_buf,cnt	1
69		LDA	t,_buf	1 Output sequence numbers.
70		TRAP	0,Fputs,StdOut	1
71		TRAP	0,Halt,O	1

Analysis

The output of the programm is: 15 12 22 8 16 11 23 21 3 5 1 17 10 7 24 19 20 18 9 14 4 2 13 6. So the last man is at position 15. The statistics at the end of the run is: 1879 instructions, 336 mems, 4350 oops; 341 good guesses, 81 bad.

In general the program needs $(5n + \lceil n/8 \rceil + \lfloor (D+n)/8 \rfloor + P-1)\mu + (27n + 3\lceil n/8 \rceil + 6\lfloor (D+n)/8 \rfloor + 4P + 72D + 15)v$. The value P stands for n-1 count downs of m-2 steps, that is P = (n-1)(m-2). The quantity D is the number of decimal digits in the output:

$$D = \sum_{i=0}^{\lfloor \log_{10} n \rfloor - 1} 9 \cdot 10^i + (\lfloor \log_{10} n \rfloor + 1)(n + 1 - 10^{\lfloor \log_{10} n \rfloor}).$$

In the case n=24, m=11 the values of P and D are $23 \cdot 9=207$ and $9+2 \cdot 15=39$. Therefore in this case the program would need $(120+3+7+207-1)\mu=336\mu$ and $(648+9+42+828+2808+15)\upsilon=4350\upsilon$ which agrees with the measured data.

Date: 12 Nov 2011