Josephus problem

01	N	IS	24
02	M	IS	11
03	t	IS	\$255
04	tt	GREG	0
05	ttt	GREG	0
06	sno	IS	\$0
07	cnt	IS	\$1
08	cur	IS	\$2
09	b	IS	\$3
10	out	IS	\$4
11	_mn	GREG	-N+1
12	_ones	GREG	\#0101010101010101
13		LOC	Data_Segment
14	_buf	GREG	©
15		LOC	@+920
16	_ctop	GREG	@+N-1
17		LOC	\#100
18	Main	SET	cnt,_mn
19	OH	STO	_ones,_ctop, cnt
20		ADD	cnt, cnt, 8
21		PBNP	cnt, OB
22		STB	_mn,_ctop,0
23		SET	sno,0
24		SET	cur, _mn
25	1H	SET	cnt, M-2
26	2 H	LDB	tt,_ctop, cur
27		ADD	cur, cur, tt
28		SUB	cnt, cnt, 1
29		PBNZ	cnt, 2B
30		LDB	tt,_ctop, cur
31		ADD	cnt, cur, tt
32		LDB	t,_ctop, cnt
33		ADD	tt, tt, t
34		STB	tt,_ctop, cur
35		ADD	cur, cnt, t
36		ADD	sno,sno,1
37		STB	sno,_ctop, cnt
38		CMP	t, sno, N -1
39		PBN	t, 1B
40		SET	sno, N
41		STB	sno,_ctop, cur
42	Output	SET	sno,_mn
43		SET	b, 8
44		SET	cnt, 0
45	OH	LDB	t,_ctop,sno
46	2 H	DIV	t, t, 10
47		GET	tt, rR
48		ADD	tt, tt, '0'
49		SL	ttt, ttt, 8
50		OR	ttt, ttt, tt
51	4H	PBNZ	t, 2B
52		SET	t, ',

initial population $n<256$
every m th person is executed; $m>1$
two additional temporary registers

Sequence number
A counter
Current element
Number of empty slots in out Output 8 characters
maximal $2 * 9+3 * 90+4 * 157=916$ bytes top of circle for N bytes

1 Store distance to next man in circle.
$\lceil n / 8\rceil$ Link each byte with next byte.
$\lceil n / 8\rceil 8$ links done.
$\lceil n / 8\rceil$
1 Last byte jumps back to the first.
1 Start execution; no one excluded so far.
1 Start with first person.
$n-1$ Count down $m-2$ links.
$P \quad$ Get distance from cur to next person
$P \quad$ and follow the link to this person.
P
P
$n-1$ cur survives the round,
$n-1$ but the next man cnt is executed.
$n-1$ Get his neighbor.
$n-1$ Add it to previous distance for cur.
$n-1$ Store the new value for cur.
$n-1$ Move to next man for next round.
$n-1$ Increase the sequence number
$n-1$ and store it for the executed man.
$n-1$ Is only one person left?
$n-1$ If not start count down again.
1 He is the last man
1 and gets the number n.
1 Start the output with first man.
18 chars in out are empty.
1 Offset in _buf to store out.
n Load next sequence number.
D Extract
D the digits
D from right
D to left
$D \quad$ and store them in the register ttt .
D
$n \quad$ Add a space in front of each sequence number.

53		JMP	9F	n	
54	1H	AND	t,ttt, \#ff	D	Move ttt in reverse order to out.
55		SR	ttt, ttt, 8	D	
56	9H	SL	out,out, 8	$D+n$	
57		ADD	out,out, t	$D+n$	
58		SUB	b, b, 1	$D+n$	
59		PBNZ	b, 3F	$D+n$	
60		STO	out, _buf, cnt	$\lfloor(D+n) / 8\rfloor$	8」 Store the characters into _buf.
61		ADD	cnt, cnt, 8	$\lfloor(D+n) / 8$	
62		SRU	out, out, 64	$\lfloor(D+n) / 8$	
63		SET	b, 8	$\lfloor(D+n) / 8$	
64	3H	PBNZ	ttt, 1B	$D+n$	
65		ADD	sno,sno,1	n	Next sequence number.
66		PBNP	sno,0B	n	
67		SL	out, out, 8	1	Add null byte to the final octabyte.
68		STO	out, _buf, cnt	1	
69		LDA	t, _buf	1	Output sequence numbers.
70		TRAP	0,Fputs,StdOut	1	
71		TRAP	0,Halt, 0		】

Analysis

The output of the programm is: $15 \begin{array}{llllllllllllllllllll}12 & 22 & 8 & 16 & 11 & 23 & 21 & 3 & 5 & 1 & 17 & 10 & 7 & 24 & 19 & 20 & 18 & 9 & 14 & 4\end{array} 2136$. So the last man is at position 15 . The statistics at the end of the run is: 1879 instructions, 336 mems, 4350 oops; 341 good guesses, 81 bad.

In general the program needs $(5 n+\lceil n / 8\rceil+\lfloor(D+n) / 8\rfloor+P-1) \mu+(27 n+3\lceil n / 8\rceil+6\lfloor(D+n) / 8\rfloor+$ $4 P+72 D+15) v$. The value P stands for $n-1$ count downs of $m-2$ steps, that is $P=(n-1)(m-2)$. The quantity D is the number of decimal digits in the output:

$$
D=\sum_{i=0}^{\left\lfloor\log _{10} n\right\rfloor-1} 9 \cdot 10^{i}+\left(\left\lfloor\log _{10} n\right\rfloor+1\right)\left(n+1-10^{\left\lfloor\log _{10} n\right\rfloor}\right)
$$

In the case $n=24, m=11$ the values of P and D are $23 \cdot 9=207$ and $9+2 \cdot 15=39$. Therefore in this case the program would need $(120+3+7+207-1) \mu=336 \mu$ and $(648+9+42+828+2808+15) v=4350 v$ which agrees with the measured data.

