Program A (Multiplication of permutations in cycle form)

053		ADD	ip,ip,4	B	
054		LDT	p,Perm,ip	B	Get the next symbol and
055		OR	tt, p,_tag	B	add a tag to it.
056	OH	CMP	t,p,_rpren	C	Is it a right parenthesis?
057		PBNZ	t, 0F	C	No, test if the end is reached.
058		STTU	tt, Perm,ip	D	Yes, replace this parenthesis.
059	OH	ADD	ip,ip,4	C	
060		CMP	t,ip,size	C	
061		PBNZ	t, A1	C	
062		JMP	A2	1	
063	A6	STT	_rpren, Perm,op	R	A6. Close. Output a right parenthesis.
064		ADD	op,op,4	R	
065		SUB	tt,op,3*4	R	Check for singleton cycle.
066		LDT	p, Perm, tt	R	
067		CMP	t,p,_lpren	R	Appears a '(' two tetras earlier?
068		CSZ	op,t,tt	R	Reset op if yes.
069	A2	SET	ip,0	E	A2. Open. Set ip to the first element.
070	OH	ADD	ip,ip,4	F	The leftist parenthesis is skipped.
071		CMP	t,ip,size	F	
072		BZ	t, Done	F	Exit at the end of input.
073		LDT	p,Perm,ip	G	Search untagged symbol.
074		PBN	p, OB	G	Loop if tagged.
075		SET	start, p	H	Set start.
076		STT	_lpren, Perm,op	H	Output a left parenthesis.
077		ADD	op,op,4	H	
078		STT	p,Perm, op	H	Output the element
079		ADD	op,op,4	H	
080		OR	p,p,_tag	H	and tag it.
081		STTU	p,Perm,ip	H	
082	A3	ADD	ip,ip,4	J	A3. Set CURRENT.
083		LDT	p,Perm,ip	J	Get next element and
084		AND	current, p,_untag	J	store it without a tag in current.
085		STT	current, Perm,size	J	Store it as sentinel.
086	A4	ADD	ip,ip,4	K	A4. Scan formula.
087		LDT	p,Perm,ip	K	Load next symbol
088		AND	p,p,_untag	K	remove possible tag
089		CMP	t, p, current	K	and compare it to current.
090		PBNZ	t, A4	K	
091		CMP	t,ip,size	L	
092		BNN	t, A5	L	Branch if sentinel is reached.
093		OR	p,p,_tag	O	Element p equals current so tag it.
094		STTU	p, Perm, ip	O	
095		JMP	A3	O	
096	A5	CMP	t, current, start	P	A5. CURRENT $=$ START?
097		BZ	t, A6	P	Yes, close the output cycle.
098		STT	current, Perm, op	Q	No, output current.
099		ADD	op,op,4	Q	
100		SET	ip,0	Q	Start in A4 from the left.
101		JMP	A4	Q	
102	Done	ADD	size,size,4		
103		LDA	t, Perm, size		Start output after the equal sign.
104		CMP	tt,op,size		Test if output is empty.
105		BNZ	tt, 1F		

106	STT	_lpren, t,0	Yes, so output the identity permutation.
107	STT	_rpren,, 4	
108		ADD	op, size, 8
109	1 H	STT	_nlnull, Perm, op
110	PrtAns	TRAP	0,Fputs, StdOut
111		TRAP	0,Halt,0

Analysis

This implementation in MMIX of Algorithm A has made some changes to the input format of the data compared to the MIX version. First the reader is replaced by a file and the output is sent to StdOut. It is assumed that StdOut can handle lines of arbitrary length. Next, the line length for the input is still 80 bytes but now 20 fields of 4 bytes each are formed. The length of an input line might be shorter so no fields with 4 spaces are considered. The equal sign is kept but it plays no role in the implementation. Its tetra in memory is used as a temporary storage. Third, all symbols are placed flush right in their fields.

Some aspects have not been changed. The MSB of the tetra that is build from the 4 bytes of a field is used to tag elements. So negative values indicate a tagged element as in the mIX implementation. No error checking for the input data is implemented. The frequency counts uses the same letters as in the old implementation if it was possible. The variable ' S ' is no longer needed and a new frequency counter ' O ' is introduced. And the implementation was done in a way that the loops in steps A2 and A4 use the same number of mems and oops. This allows to keep the analysis similar to the MIX program. Of course, a faster implementation is possible.

The algorithm needs without input and output $(A+2 C+D+G+3 H+2 J+K+O+Q+2 R) \mu+$ $(8+3 A+7 B+5 C+3 D+E+3 F+2 G+9 H+4 J+5 K+4 L+4 P+3 O+4 Q+8 R) v$.

As in Eq. (8) of TAOCP V1, Section 1.3.3, the following equations hold:

$$
A=C ; \quad E=R+1 ; \quad R=P-Q .
$$

And we find the new equations

$$
\begin{aligned}
F & =E+G-H=G-H+P-Q+1 ; & & L=J+Q=H+O+Q ; \\
G & =F-1 ; & & P=L-O=H+Q \Longleftrightarrow Q=P-H .
\end{aligned}
$$

Applying these equations to the used mems and oops several variables are eliminated: $(2 B+C+D+G+$ $3 H+3 J+K+P) \mu+(7 B+8 C+3 D+5 G+7 H+11 J+5 K+12 P+12) v$.

Next, the following equations hold:

$$
\begin{aligned}
B+C & =\text { number of words of input; } \\
B & =\text { number of "(" in input; } \\
D & =\text { number of ")" in input; } \\
B=D & =\text { number of cycles in input; } \\
H & =\text { number of cycles in output (inclusive singletons); } \\
B+C & =B+B+H+O \Longleftrightarrow J=C-B \text { as all symbols get tagged once; } \\
P & =\text { number of distinct elements in input. }
\end{aligned}
$$

And the nontrivial relation is now $F+J+K=(B+C)(P+1)$. The first left parenthesis is skipped but a sentinel is read.

With the variables of Eq. (19) the profile of the algorithm is $(N Y+4 Y-2 M+N+3 U-1) \mu+(5 N Y+$ $19 Y-10 M+12 N+7 U+7) v$.

Running the program with Eq. (6) as input the mmix-simulator shows at the end: 1569 instructions, 330 mems, 1705 oops; 305 good guesses, 50 bad. With this input it follows that $Y=29, N=7$, $M=5$, and $U=3$. The algorithm itself needs 1532 instructions, 324 mems, 1628 oops; 300 good guesses, 48 bad. As expected the following equations hold: $11 * 29-10+7+9-1=324$ and $54 * 29-$ $50+84+21+7=1628$.

