Program I (Inverse in place)

N	IS	6		Number of elements in the permutation
j	IS	\$2		Variables of the algorithm
i	IS	\$3		
mm	IS	\$4		For m the value is multiplied by 8
	LOC	Data_Segment		
X	GREG	©		$X[0]$ is not used The data of Table 1.3.3-3
	OCTA	0		
	OCTA	6,2,1,5,4,3		
	LOC	\#100		
* Inverse a permutation in place				
Invert	SET	mm, N	1	I1. Initialize.
	SL	mm, mm, 3	1	$\overline{m \leftarrow n .}$$j \leftarrow-1$.
	NEG	j,1	1	
2 H	LDO	i, X, mm	N	$\frac{\text { I2. Next element. }}{\text { To I5 if } i<0 .} i \leftarrow X[m] \text {. }$
	PBN	i, 5F	N	
3H	STO	j, X, mm	N	I3. Invert one. $X[m] \leftarrow j$.
	SR	j,mm,3	N	
	NEG	j, j	N	$\begin{aligned} & j \leftarrow-m . \\ & m \leftarrow i . \end{aligned}$
	SL	mm,i,3	N	
	LDO	i, X, mm	N	$i \leftarrow X[m]$.
4H	PBP	i, 3B	N	I4. End of cycle? To I3 if $i>0$. Otherwise set $i \leftarrow j$.
	SET	i, j	C	
5H	NEG	i, i	N	I5. Store final value.$\overline{X[m] \leftarrow-i .}$
	STO	i, X, mm	N	
6H	SUB	$\mathrm{mm}, \mathrm{mm}, 8$	N	$\frac{\text { I6. Loop on } m \text {. }}{\text { To I2 if } m>0 .}$
	PBP	mm, 2B	N	
* inspect	memory locations of array X for the result			
	TRAP	0,Halt,0		
Main	IS	Invert		-

Analysis

This time negation is used to tag the numbers as it is stated in the algorithm. Programs A and B used symbols not numbers.

The PB. . instructions in lines 05 and 11 are based on the assumption that $C \leq N / 2$. Later the analysis of C in the book shows that the assumption is correct.

The program needs $4 N \mu+(12 N+5 C+5) v$. The execution with the test data gives the statistic for Invert: 78 instructions, 24 mems, 92 oops; 11 good guesses, 7 bad. As in this case $N=6$ and $C=3$ the above formula calculates 24μ and $72+15+5 v=92 v$ in agreement with the measured data.

